

Velocimetry (UDV).

Torque Measurements Using Strain Gauges on the Magnetorotational Instability Experiment

M. Tabbutt¹, E. Gilson², K. Caspary², H. Ji^{2,3}

. University of Wisconsin – Madison, 2. Princeton Plasma Physics Laboratory, 3. Princeton University

and characterize the data by 2 parameters, m and b

$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{R_{SG_1}}{R_{SG_1} + R_{SG_2}} - \frac{1}{R_{SG_1}}$$

Relationships Between Resistance, Length and Force:

$$R = \frac{\rho L_{SG}}{A} \qquad \qquad \delta = \frac{FL^3}{3EI}$$

Linear Relationship Between Torque and Voltage:

$$V = m \cdot \tau$$

Results and Conclusions

• Constructed new brass bars with half the thickness as previously tested Same tests were carried out with smaller

Accurate Parameter Regime Results:

torques on the bars • Results very strongly followed a linear

trend again

• Increased the gain to be able to be in the regime of the MRI Experiment • Expect to be in the tens of milli-Newton-meter scale for torques in the MRI experiment.

$$\frac{R_2}{R_1 + R_2}$$

$$I = \frac{1}{12}w \cdot h^3$$

Estimated Torque in a Taylor Couette Geometry Using Typical MRI Parameters

Define an Ideal Taylor-Couette Profile:

$$=\frac{r_2^2\cdot\Omega_2 - r_1^2\cdot\Omega_1}{r_2^2 - r_1^2} \qquad \qquad \beta = r_1^2\cdot r_2^2(\frac{\Omega_1 - \Omega_2}{r_2^2 - r_1^2})$$
$$V_{\theta}(r) = \alpha \cdot r + \frac{\beta}{r}$$

Compute the Torque per unit Height:

$$\tau(r) = -2\pi\nu\rho \cdot r^3 \cdot \frac{\partial}{\partial r} \left(\frac{V_{\theta}(r)}{r}\right)$$

Estimated Torque per unit Height for the MRI Parameters: $\tau(r_1) = 4.997 * 10^{-3}N$

Typical Run Parameters for MRI Experiment		
r_1	Inner Radius	.07 m
r_2	Outer Radius	.21 m
Ω_1	Inner Cylinder Speed	43.80 $\frac{rad}{sec}$
Ω_2	Outer Cylinder Speed	5.81 $\frac{rad}{sec}$
ho	Density of Working Liquid	$6.36 \frac{kg}{Liter}$ (GaInSn)
u	Kinematic Viscosity	$2.98 * 10^{-7} \frac{m^2}{sec}$